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configuration of 1. The bridgehead methyl at C(I) has the /3 
configuration, all other substituents are a. In general bond 
distances and angles agree with generally accepted values and 
there are no abnormally short intermolecular contacts. 

Work in progress indicates that we have isolated several 
compounds having the same new carbon skeleton, which we 
wish to name the dollabellane skeleton 4. Thus the acetate 1 
is (15"*, IE, 4R*, 7E, 1OS*, HR*, 12R*)-10-acetoxy-18-
hydroxy-2,7-dollabelladiene.7 The dollabellane skeleton could 
be formed by cyclization of geranylgeraniol pyrophosphate as 
shown. 

4 
1 

The compounds isolated from the digestive glands of mol-
lusks have invariably been traced to a dietary source. This has 
not been possible in the present study, since Dollabella is a 
nocturnal feeder and there are no reports of its dietary pref­
erences. 
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Reductive Elimination Reactions 

Sir: 

Within the set of important class reactions in coordination 
and catalytic chemistry1 is the symmetric pair of "oxidative 
addition" and "reductive elimination". Mechanistic complexity 

within this pair of reactions has been clearly indicated by recent 
studies.2"4 Through reactions of HCo[P(OCH3)3]4

5 and 
CH3Co[P(OCH3)3]4

5 with H+ and CH3
+, we have obtained 

a series of Y2Co[P(OCH3)3]4
+ complexes which provide 

further information on intimate mechanism in reductive 
elimination. A valuable and general synthetic procedure has 
been developed from the elimination reactions. 

The cis complex6 H2Co[P(OCH3)3]4
+ was readily gener­

ated by protonation of HCo[P(OCH3)3]4 with a nonmineral 
acid5-8 and isolated in high yields as H2Co[P(OCH3)3]4+-
PF6

-.9 '10 In solution at 25°, the dihydride11 slowly evolved 
hydrogen to form Co[P(OCH3)3]5

+.12 Exposure of solu­
tions13,14 of the dihydride cation to deuterium gave an equili­
brium131' mixture of D2Co[P(OCH3)3]4

+ and H2 in ~24 h; no 
HD was detected.15 Hence a conventional equilibrium (eq 
D 

H2Co[P(OCH3)3]4
+ ^ H 2 + Co[P(OCH3)3]4

+ (D 

must be extant with the H2 elimination step strictly intramo­
lecular. An analogous exchange was observed in acetonitrile 
although a small amount of HD was produced due to a de-
protonation step (eq 2) that occurs slowly in donor solvents.15 

slow 

S + H2Co[P(OCH3)3]4+ ^ ^ S H + 

+ HCo[P(OCH3)3]4 (2) 

Kinetic studies of the reaction of the dihydride with trimethyl 
phosphite (eq 3) 

H2Co[P(OCH3)3]4
+ + (P(OCH3), - H2 

+ Co[P(OCH3)3]5
+ (3) 

and the isolation of solid Co[P(OCH3)3]4
+PF6- and of labile 

adducts of Co [P(OCH3) 3] 4+ further delineate the solution 
chemistry of the dihydride and the clean character of this re­
versible reductive elimination step. Reaction rate for the 
phosphite reaction (eq 3) with the dihydride in dichloro-
methane solution was, under pseudo-first-order conditions, 
essentially insensitive to reactant ratio. Reaction order in 
phosphite was established by the initial rates method, and the 
data were fully consistent with a steady state condition for the 
intermediate complex formed in eq 1, followed by reaction 4 

Co[P(OCH3)3]4
+ + P(OCH3), ^VCo[P(OCH 3) 3] 5

+ (4) 

where the very stable Co[P(OCH3)3]5
+ complex was formed 

with the condition of -d|H2Co[P(OCH3)3]4+}/d/ = 
^^4{H2Co[P(OCH3)3]4+}[P(OCH3)3]/(^- l[H2] + k4> 
[P(OCH3)3]) at 30 0C with A: 1 = 4.2 XlO -5S-1 . Reaction rate 
was substantially higher in coordinating solvents indicating 
that the further equilibrium reaction (eq 5) 

Co[P(OCH3)3]4
+ + S ^ SCo[P(OCH3)3]4

+ (5) 

must be considered in such solvents (vide infra). The slow de­
composition of the dihydride in the absence of added phosphite 
results from reaction 4 with free phosphite derived from the 
dissociative reaction (eq 6). 

H2Co[P(OCH3)3]4
+ - H2Co[P(OCH3)3]3+ 

+ P(OCH3), (6) 

An estimate of the ligand dissociation rate, for dihydride, based 
on 1H DNMR spectra16 in the +20 to 70° range, is about 102 

s-> at 70°. 
Methylation of HCo[P(OCH3)3]4 or protonation17 of 

CH3Co[P(OCH3)3]4 quantitatively (eq 7) yielded methane; 
the major cobalt products12 identified were Co[P(OCH3)3]5

+ 

and cobalt metal. 
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CH3(H)Co[P(OCH3)3]4+ — CH4 + Co[P(OCH3)3]4
+ (7) 

Methane elimination was very fast even at —78°; the meth-
ylhydrido cobalt complex was too unstable for isolation or 
spectral characterization. Protonation of CH3Co[P(OCH3)3]4 
in a deuterated solvent gave only CH4 and protonation of 
CD3Co[P(OCH3)3]4 gave only CD3H. Hence this elimination 
reaction is clean and fully intramolecular in character; there 
can be no long-lived radical intermediates. 

Intermediacy of Co[P(OCH3)3]4
+ was demonstrated by 

trapping reactions as in the reaction of CH3Co[P(OCH3)3]4 
with NH4PF6 at 0° which gave methane and Co[P-
(OCH3)3]4(NH3)+PF6-.18.19 Similarly, protonation of the 
methyl complex in the presence of olefins and acetylenes gave 
high yields of isolable Co[P(OCH3)3]4L

+ complexes.20 Hence, 
the reductive elimination reaction in this CH3(H)Co+ complex 
has broad synthetic value which we have also extended to 
CoL3L2+ complexes by protonation of r)3-C}H$Co-
[P(OCH3)3]3

5 in the presence of four-electron donors like 
butadiene (butadiene produced the fluxional ^-C4H6Co-
[P(OCH3)3]3+caion21). 

Isolation of Co[P(OCH3)3]4
+ as a blue solid salt was 

achieved by an indirect procedure22 (eq 8). 

CH3Co[P(OCH3)3]4H^H6Co[P(OCH3)3)4(C3H6)+PF6-
- 7 8 ° 

^•Co[P(OCH 3 ) 3 ] 4
+ PF<r (8) 

vacuum 

Direct reaction23 of the blue salt with hydrogen and with donor 
ligands24 was quantitative to give H2Co[P(OCH3)3]4

+PF6
_ 

and Co[P(OCH3)3]4L+PF6~, respectively. On dissolution of 
the blue salt in non- or weakly coordinating solvents,25 a rel­
atively rapid redox and redistribution reaction occurred with 
the formation of Co[P(OCH3)3]5

+, cobalt metal, and pre­
sumably12 Co[P(OCH3)3]6

3+. 
In reductive elimination for cis dihydrido- and methylhy-

dridometal complexes, it would appear that rates will invari­
ably be higher for the latter type of complex. In our cobalt 
system, the methane elimination unlike the dihydrogen elim­
ination was irreversible (reversibility in this type of system 
would be an uncommon phenomenon) but this alone does not 
account for rate differences between the two cobalt complexes 
since k i (eq 1) for the dihydride is several orders of magnitude 
smaller than the rate of methane elimination in CH3(H)-
Co[P(OCH3)3]4

+. Interestingly, C3H5(H)Co[P(OCH3)3]3
+ 

is more stable than CH3(H)Co[P(OCH)3)3]4
+, a point of 

significance since C3H5(H)2Co[P(OCH3)3]3 is an interme­
diate in the catalytic hydrogenation of arenes with C3HsCo-
[P(OCH3)3]3.26.27 

Alkylation of CH3Co[P(OCH3)3]4 has been effected with 
(CH3)30+PF6~ in a variety of solvents. The alkylation step 
was slow; a precise determination of reaction rate has been 
precluded by the lack of a good oxonium salt solvent inert to 
reactants and products in the alkylation reaction although 
dimethyl carbonate seemed unreactive. The dimethylcobalt 
complex, (CH3)2Co[P(OCH3)3]4+, was too unstable for 
conventional isolation, and reductive elimination occurred in 
this complex at a rate intermediate between the two examples 
discussed above.28 Methane was irreversibly produced and 
little deuterium incorporation in the methane was observed 
when the alkylation reaction was effected in deuterated sol­
vents. Reaction of (CH3)30+ with CD3Co[P(OCH3)3]4 in 
dichloromethane produced CH3D, CD3H, CH4, and CD4; no 
CH2D2 was detected.29 CH4 and CD4 were produced probably 
because the alkylation step was reversible. Thus, as in the re­
ductive elimination reaction in the H2Co+ and CH3(H)Co+ 

cations, the elimination step in the dimethyl cation appears to 
be intramolecular. The expected product in reductive elimi­

nation of methane from (CH3)2Co[P(OCH3)3]4
+ is the cat-

ionic carbene CH2Co[P(OCH3)3]4
+. We have evidence, from 

the decomposition of (CH3)2Co[P(OCH3)3]4
+ in a CD2Cl2 

medium, of a possible carbene-solvent reaction. The major 
hydrocarbon product was CH4 but small amounts OfC2H6 and 
CH2=CD2 were detected. Attempts to isolate the putative 
carbene complex from the reaction mixture have been unsuc­
cessful and no characteristic "carbene" reactions with other 
substrates have been demonstrated. 

Disparity in the rates for the two cases of methane elimi­
nation may reflect a multistep methane elimination step in the 
dimethylcobalt cation which could' consist of reactions 
9-11, 

(CH3)2Co[P(OCH3)3]4
+ ^ (CH3)2Co[P(OCH3)3]3

+ 

+ P(OCH3), (9) 

(CH3)2Co[P(OCH3)3]3+^ 

(CH2)(H) (CH3)Co[P(OCH3)3]3
+ (10) 

(CH2)(H)(CH3)Co[P(OCH3)3]3
+ ^ l CH4 

+ {CH2Co[P(OCH3)3]3
+j (11) 

whereas the elimination step in the methylhydridocobalt cation 
is probably "concerted". Equilibrium 9 probably lies largely 
to the right.28 

We note the significance of this general class30 of compounds 
not only for mechanistic studies of the reductive elimination 
step but also for an extensive evaluation of the steric,31 

charge,32 and electronic factors that influence the thermody­
namic and kinetic parameters of the elimination step. Thus, 
in the Y2ML4

Z class, L may be varied extensively within the 
cobalt and iron30 groups. A systematic study of this class of 
complexes is in progress as well as of allylmetal protonation 
and alkylation reactions that should yield important infor­
mation about metal complexes often postulated as reaction 
intermediates especially in olefin isomerization. 
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Mechanism of the Formation of Cyclopentadienone 
Derivatives from 4-Aryl-2,6-di-terf-butylphenols 
by Base-Catalyzed Oxygenation 

Sir: 

Recently it has been shown that 4-aryl-2,6-di-/e/-/-butyl-
phenols (1) are easily oxygenated in the presence of /-BuOK 
in /-BuOH to give antiaromatic 3-aryl-2,5-di-/er/-butylcyc-
lopentadienones (5) in good yields.1 The reaction provides a 
novel and convenient method for the synthesis of such anti-
aromatic compounds.2 We now wish to report the mechanism 
of this interesting reaction, clarified with the aim of isolation 
of intermediates employing 1 (R = 4-OMe) which quantita­
tively gives the cyclopentadienone 5 (R = 4-OMe). 

It has been found that modification of the reaction condi­
tions makes it possible to isolate the intermediates. Thus, 
oxygen was bubbled through a solution of 1 (R = 4-OMe) (15 
mmol) in /-BuOH/petroleum ether (1:1) (100 ml) containing 
/-BuOK (75 mmol) at -25 0C for 40 min. Acidification of the 
reaction mixture with aqueous NH4CI solution and evapora­
tion of the solvent afforded hydroperoxide 2 in 85% yield: 
yellow needles; mp 99-101°; ir (KBr) 3340 (OOH), 1665 
cm -1 (C=O); NMR (CDCl3) 5 1.03 (9, H, s, /-Bu), 1.28 (9 
H, s, /-Bu), 3.84 (3 H, s, OMe), 6.61 (1 H, d, vinyl H, / = 2.8 
Hz), 7.05 (1 H, d, vinyl H, J = 2.8 Hz), 6.7-7.6 (4 H, m, 
ArH), 9.00 (1 H, s, OOH, exchangeable with D2O).3 Treat­
ment of this hydroperoxide with /-BuOK in /-BuOH at 75 0C 
quantitatively gave 5 (R = 4-OMe), while the treatment at 
room temperature resulted in the formation of 3 and 5 (R = 
4-0Me) in 75 and 25% yields, respectively. The ratio of 3 to 
5 (R = 4-0Me) depends on the reaction temperature: the 
higher temperature causes the higher yield of 5 (R = 4-OMe).1 

As was shown by separate experiments,1 the cyclopentadi-
enones 5 are formed in high yields upon heating the epoxy-
o-quinols of type 3 with /-BuOK in /-BuOH at 75 0C. It is, 
therefore, obvious that the formation of 5 (R = 4-0Me) on the 
oxygenation of 1 (R = 4-OMe) proceeds by a mechanism in­
volving these intermediates. All attempts to isolate any inter­
mediate between 3 and 5 (R = 4-0Me) in this reagent system 
were unsuccessful. However, adsorption of 3 on activated basic 
alumina (activity I) in CH2CI2 followed by elution with MeOH 
afforded isomeric ring contracted product 4 in 50% yield: 
colorless needles; mp 158-160°; ir (KBr) 3460 (OH), 1730 
(CHO), 1710 cm"1 (ring C=O); NMR (CDCl3): 5 0.63 (9 
H, s, /-Bu), 1.33 (9 H, s, /-Bu), 3.39 (1 H, s, OH, exchangeable 
with D2O), 3.85 (3 H, s, OMe, 7.24 (1 H, s, vinyl H), 6.9-7.4 
(4 H, m, ArH), 9.17 (1 H, s, CHO); together with 5 (R = 4-
OMe) (25%). In addition, treatment of 3 with the same basic 
alumina in /-BuOH at 75 0C quantitatively afforded 5 (R = 
4-OMe). The compound 4 was also obtained by treatment of 
3 with silica gel or CF3COOH at room temperature. Taking 
account of the conclusions by Hart et al.8 for the acid-catalyzed 

Scheme I 

R: 4-OMe, 3-OMe, 2-OMe, 4-Me, 3-Me, 2-Me, 4-Cl1 H 
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